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Nearest Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑

A query point 𝑞𝑞 comes online

Goal: 
• Find the nearest data point 𝑝𝑝∗

• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded 

intrinsic dimension
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Approximate Nearest Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑

A query point 𝑞𝑞 comes online

Goal: 
• Find the nearest data point 𝑝𝑝∗

• Do it in sub-linear time and small space
• Approximate Nearest Neighbor

─ If optimal distance is 𝑟𝑟, report a point in distance c𝑟𝑟 for c =
1 + 𝜖𝜖
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Approximate Nearest Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑

A query point 𝑞𝑞 comes online

Goal: 
• Find the nearest data point 𝑝𝑝∗

• Do it in sub-linear time and small space
• Approximate Nearest Neighbor

─ If optimal distance is 𝑟𝑟, report a point in distance c𝑟𝑟 for c =
1 + 𝜖𝜖

─ For Hamming (and Manhattan) query time is 𝑛𝑛1/𝑂𝑂(𝑐𝑐) [IM98] 

─ and for Euclidean it is 𝑛𝑛
1

𝑂𝑂(𝑐𝑐2) [AI08]
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𝑞𝑞

Nearest Hyperplane Search

• Input: a set of 𝑁𝑁 hyperplanes of 
dimension 𝑘𝑘 in ℝ𝑑𝑑

• Query: a point in ℝ𝑑𝑑

Induced Representation:
• Input: a set 𝑃𝑃 of 𝑛𝑛 points in ℝ𝑑𝑑

• Search Space: all 𝑁𝑁 = 𝑛𝑛
𝑘𝑘 ≈ 𝑛𝑛𝑘𝑘

hyperplanes defined by 𝑘𝑘 points in 𝑃𝑃
• Query: a point in ℝ𝑑𝑑

𝑞𝑞



Our Problems

1. Nearest Induced Subspace
Closest 𝑘𝑘- subspace passing through the 
origin and 𝑘𝑘 points of 𝑃𝑃

2. Nearest Induced Flat
Closest (𝑘𝑘 − 1)-flat (affine subspace) 
passing through 𝑘𝑘 points of 𝑃𝑃

3. Nearest Induced Simplex
Closest (𝑘𝑘 − 1)-simplex passing through 
the origin and 𝑘𝑘 points of 𝑃𝑃

𝑂𝑂

𝒏𝒏 = 𝟑𝟑,
𝒌𝒌 = 𝟐𝟐



Connection to Sparse Linear Regression

Sparse Linear Regression:
• Given a matrix 𝑀𝑀 ∈ ℝ𝑑𝑑×𝑛𝑛 and a 𝑑𝑑 dimensional query 𝑞𝑞
• Find a 𝒌𝒌-sparse 𝑛𝑛 dimensional vector 𝜏𝜏 which minimizes 𝑀𝑀𝜏𝜏 − 𝑞𝑞 2

Equivalent to the Nearest Induced Subspace

 If we require 𝜏𝜏 1 = 1,
 If we further require 𝜏𝜏𝑖𝑖 ≥ 0,

Applications in Machine learning, compressed sensing, computer vision, etc.

=𝑑𝑑
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1. Approximate Nearest Induced Problems (Online)

2. Special case: convex variant of 𝒌𝒌 = 𝟐𝟐, Nearest Induced 

Segment

Problem Equivalent problem Space Query

ANI Subspace SLR 𝑛𝑛𝑘𝑘−1 ⋅ 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑘𝑘−1 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
ANI Flat Affine SLR 𝑛𝑛𝑘𝑘−1 ⋅ 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑘𝑘−1 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
ANI Simplex Convex SLR 𝑛𝑛𝑘𝑘−1 ⋅ logk 𝑛𝑛 ⋅ 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑘𝑘−1 ⋅ logk 𝑛𝑛 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

Problem Approximation Space Query

Online 1 + 𝜖𝜖 , 𝜖𝜖 ≤ 1 𝑛𝑛 ⋅ log𝑛𝑛 ⋅ 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑘𝑘−1 ⋅ 𝜖𝜖−2 log𝑛𝑛 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
Offline 2(1 + 𝜖𝜖) 𝑛𝑛𝑘𝑘−1 ⋅ 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑘𝑘−1 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

Results – Algorithms



1. Assuming “Affinely Degenerate Conjecture”
Our data structure in the online settings provides an optimal 
trade-off up to polylog factors: 
• No algorithm can improve both preprocessing from �𝑶𝑶(𝒏𝒏𝒌𝒌) and 

query time from �𝑶𝑶(𝒏𝒏𝒌𝒌−𝟏𝟏) by much.

2. Assuming hardness for the 𝒌𝒌-sum problem
Solving all three variants of the problem in the offline setting 

requires �𝛀𝛀(𝒏𝒏
𝒌𝒌/𝟐𝟐

𝒆𝒆𝒌𝒌 ) times.

Results – Conditional Lower Bounds



Algorithms



Nearest Induced Subspace
1. Fix a subset 𝐵𝐵 of 𝑘𝑘 − 1 points 
2. Search among all 𝑘𝑘-subspaces ℱ that 

include the points in 𝐵𝐵. 
 Use a single ANN query

≈ 𝑛𝑛𝑘𝑘−1 such subsets

𝑛𝑛 − 𝑘𝑘 + 1 such subspaces

Total time is �𝑂𝑂(𝑛𝑛𝑘𝑘−1 ⋅ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

• Use the projection Π which maps the points in 𝐵𝐵 into the origin.
 ℱ becomes a set of vectors 𝑽𝑽 = 𝓕𝓕𝚷𝚷 ∈ ℝ𝑑𝑑−𝑘𝑘+1

 Project the query as well to get 𝒒𝒒𝚷𝚷 ∈ ℝ𝑑𝑑−𝑘𝑘+1

• Normalize all vectors to be on the unit sphere

 The closest subspace in ℱ to 𝑞𝑞 corresponds to the closest vector in 𝑉𝑉 to 𝑞𝑞Π

𝑂𝑂 ∈ 𝐵𝐵

𝑞𝑞 𝑝𝑝1𝑝𝑝2

𝑂𝑂

𝑞𝑞
𝑝𝑝1𝑝𝑝2

ANN



Nearest Induced Flat
1. Fix a subset 𝐵𝐵 of 𝑘𝑘 − 1 points 
2. Search among all 𝑘𝑘-subspaces ℱ that 

include the points in 𝐵𝐵. 
 Use a single ANN query

≈ 𝑛𝑛𝑘𝑘−1 such subsets

𝑛𝑛 − 𝑘𝑘 + 1 such subspaces

Total time is �𝑂𝑂(𝑛𝑛𝑘𝑘−1 ⋅ 𝑇𝑇𝐴𝐴𝑛𝑛𝑛𝑛)

• Use the projection Π which maps the points in 𝐵𝐵 into the origin.
 ℱ becomes a set of vectors 𝑽𝑽 = 𝓕𝓕𝚷𝚷 ∈ ℝ𝑑𝑑−𝑘𝑘+1

 Project the query as well to get 𝒒𝒒𝚷𝚷 ∈ ℝ𝑑𝑑−𝑘𝑘+1

• Normalize all vectors to be on the unit sphere

 The closest subspace in ℱ to 𝑞𝑞 corresponds to the closest vector in 𝑉𝑉 to 𝑞𝑞Π

 Similar approach works for Nearest Induced Flat



Nearest Induced Simplex

• Why not the same approach?
⤬ Projection of 𝑞𝑞 onto the nearest flat might fall outside of 

the simplex corresponding to the nearest subspace

𝑂𝑂

𝑞𝑞

Intermediate goal: retrieve all “feasible simplices”
• Find all 𝑝𝑝 ⊂ 𝑃𝑃 ∖ 𝐵𝐵 s.t. projection of 𝑞𝑞 on to the flat formed by 𝑝𝑝 ∪
𝐵𝐵, i.e.,  ℱ𝑝𝑝∪𝐵𝐵, falls inside the simplex Δ𝑝𝑝∪𝐵𝐵.

 If we accomplish this, we can use the algorithm for finding the 
closest flat among this set.
What if the closest point on the closest simplex lies on the 

boundary?
• The boundary is a lower dimensional object which can be 

checked by brute force in time �𝑶𝑶(𝒏𝒏𝒌𝒌−𝟏𝟏)



Characterizing Feasibility

More specifically it is enough to have
• The distance (denoted by 𝒓𝒓) from 𝑞𝑞 to the flat ℱ𝑝𝑝∪𝐵𝐵
• The relative positioning of 𝑝𝑝 with respect to 𝐵𝐵
• The relative positioning of 𝑞𝑞 with respect to 𝐵𝐵

Relative Positioning of a point 𝑝𝑝 with respect to 
𝐵𝐵 is (𝛼𝛼1,⋯ ,𝛼𝛼𝑘𝑘−1) where 
 𝛼𝛼𝑖𝑖 is the angle between (𝑘𝑘 − 2)-dimensional 

flats ℱ𝐵𝐵 and ℱ𝐵𝐵∪ 𝑝𝑝 ∖ 𝑝𝑝𝑖𝑖
 𝑝𝑝𝑖𝑖 is the 𝑖𝑖-th point in 𝐵𝐵

“One can detect whether the simplex Δ𝑝𝑝∪𝐵𝐵 is feasible or not 
without having full knowledge of 𝑝𝑝 and 𝑞𝑞.”

𝐵𝐵

𝑝𝑝

𝑝𝑝1 𝑝𝑝2
𝛼𝛼2 𝛼𝛼1



Characterizing Feasibility

Let
• 𝛼𝛼1,⋯ ,𝛼𝛼𝑘𝑘−1 : relative positioning of 𝑝𝑝 w.r.t. 𝐵𝐵
• (𝛼𝛼1′ ,⋯ ,𝛼𝛼𝑘𝑘−1′ ): relative positioning of 𝑞𝑞𝑞 w.r.t. 𝐵𝐵

 Where 𝑞𝑞𝑞 is the projection of 𝑞𝑞 on ℱ𝐵𝐵∪ 𝑝𝑝

Let (𝛼𝛼1
𝑞𝑞 ,⋯ ,𝛼𝛼𝑘𝑘−1

𝑞𝑞 ) be the relative positioning of 𝑞𝑞 with respect to 𝐵𝐵

We don’t know 𝒓𝒓 in advance 

Observation: Δ𝐵𝐵∪ 𝑝𝑝 is feasible iff 𝛼𝛼𝑖𝑖′ ≤ 𝛼𝛼𝑖𝑖 for every 𝑖𝑖 < 𝑘𝑘

Lemma: one can compute (𝛼𝛼1′ ,⋯ ,𝛼𝛼𝑘𝑘−1′ ) given
1. (𝛼𝛼1

𝑞𝑞 ,⋯ ,𝛼𝛼𝑘𝑘−1
𝑞𝑞 )

2. and 𝒓𝒓:  the distance from 𝑞𝑞 to ℱ𝐵𝐵∪ 𝑝𝑝

We can detect 
Feasibility using 

Range search trees

𝐵𝐵

𝑝𝑝

𝑝𝑝1
𝑝𝑝2

𝛼𝛼2
𝛼𝛼1

𝑞𝑞

𝑞𝑞𝑞

𝛼𝛼𝑞1𝛼𝛼𝑞2



Feasibility is Monotone

Given
• 𝛼𝛼1,⋯ ,𝛼𝛼𝑘𝑘−1 : relative positioning of 𝑝𝑝 w.r.t. 𝐵𝐵
• (𝛼𝛼1

𝑞𝑞 ,⋯ ,𝛼𝛼𝑘𝑘−1
𝑞𝑞 ): relative positioning of 𝑞𝑞 w.r.t. 𝐵𝐵

Monotonicity Property: if for a parameter 𝑟𝑟 the corresponding 
simplex is feasible, then for all 𝑟𝑟′ ≥ 𝑟𝑟, the corresponding simplex 
is feasible too.

We can use binary search to find the correct value of 𝑟𝑟



Algorithm Outline
Data Structure:

• Construct a range search tree on the (𝑘𝑘 − 1)-tuples (𝛼𝛼1
𝑝𝑝,⋯ ,𝛼𝛼𝑘𝑘−1

𝑝𝑝 ) for all 
points 𝑝𝑝 ∈ 𝑃𝑃 ∖ 𝐵𝐵

• For each node 𝑇𝑇 in the tree, construct a data structure on the vectors 
corresponding to 𝑇𝑇, for retrieving the nearest flat ℱ𝐵𝐵∪ 𝑝𝑝 for 𝑝𝑝 ∈ 𝑇𝑇

Query Processing:
• Given 𝑞𝑞, compute 𝛼𝛼1

𝑞𝑞 ,⋯ ,𝛼𝛼𝑘𝑘−1
𝑞𝑞

• Use Binary Search on 𝑟𝑟
 Compute 𝛼𝛼1′ ,⋯ ,𝛼𝛼𝑘𝑘−1′ using 𝛼𝛼1

𝑞𝑞 ,⋯ ,𝛼𝛼𝑘𝑘−1
𝑞𝑞 and 𝑟𝑟

 Use the range search tree to retrieve all points 𝑝𝑝 whose simplices
would have been feasible if at distance 𝑟𝑟
This step will return polylog nodes 𝑇𝑇 from the tree whose union 

is our desired set of points.
 Use their corresponding data structures to retrieve the nearest flat 
ℱ𝐴𝐴𝐴𝐴𝐴𝐴 among those.

 If the distance between 𝑞𝑞 and ℱ𝐴𝐴𝐴𝐴𝐴𝐴 was less than 𝑟𝑟, then continue 
with a smaller value of 𝑟𝑟, otherwise continue with a larger value.



Conditional Lower Bounds



Affinely Degenerate Conjecture

Affinely Degenerate Conjecture: given a set 𝑃𝑃 of 𝑛𝑛 points 

in ℝ𝑑𝑑, checking whether they are in general position 

requires Ω(𝑛𝑛𝑑𝑑) time [Erickson, Seidel’95].

• General position: all subsets of 𝑑𝑑 + 1 points are 

affinely independent.



• Let 𝒌𝒌 = 𝒅𝒅 and construct our data structure for Nearest Induced
Flat with space 𝑶𝑶 𝒏𝒏𝒌𝒌 = 𝑶𝑶(𝒏𝒏𝒅𝒅) and a query time of �𝑶𝑶(𝒏𝒏𝒅𝒅−𝟏𝟏)

 Use ANN of [AMNSW’98]: 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑂𝑂(𝑛𝑛) and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑂𝑂 log𝑛𝑛

• Now for each input point 𝑝𝑝 , we query the closest 𝑑𝑑 − 1 -
dimensional induced flat passing through 𝑑𝑑 points of 𝑷𝑷 ∖ {𝒑𝒑} to P
 Our data structure can be modified to handle this type of

query with an extra log factor.

• If any of the queries reported a 0, the point set is not in general
position. Total time is 𝑶𝑶(𝒏𝒏𝒅𝒅).

The Reduction



The 𝑘𝑘-sum Problem

𝒌𝒌-sum problem: given 𝑛𝑛 integer numbers 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 , 
does there exist a subset of size 𝑘𝑘 whose sum is 0? 

• Conjectured to require �Ω(𝑛𝑛 𝑘𝑘/2 ) time 

[Patrascu, Williams’10].



• For each integer 𝑎𝑎𝑖𝑖 assign a (𝑘𝑘 + 1) dimensional vector 𝑣𝑣𝑖𝑖
 First coordinate of 𝑣𝑣𝑖𝑖 is 𝑎𝑎𝑖𝑖
 All other coordinates are 0, except for one randomly chosen 

coordinate which is 1

• The query is 𝟎𝟎, 𝟏𝟏
𝒌𝒌

, … , 𝟏𝟏
𝒌𝒌

𝐓𝐓
and let 𝑣𝑣𝑖𝑖1 , … , 𝑣𝑣𝑖𝑖𝑘𝑘 be the points 

corresponding to the nearest flat.
 If the distance of query to the flat is 0 return 𝑎𝑎𝑖𝑖1 , … , 𝑎𝑎𝑖𝑖𝑘𝑘

This means 𝑞𝑞 = 𝑐𝑐1𝑣𝑣𝑖𝑖1 + ⋯+ 𝑐𝑐𝑘𝑘𝑣𝑣𝑖𝑖𝑘𝑘 for some coefficients
 Otherwise return not possible

• With probability 𝑒𝑒−𝑘𝑘 the positions of 1’s in 𝑣𝑣𝑖𝑖1 , … , 𝑣𝑣𝑖𝑖𝑘𝑘 form a 
permutation. Therefore their coefficients should be equal and 
thus ∑𝑗𝑗≤𝑘𝑘 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑞𝑞1 = 0

• Similar argument for the reverse direction.

The Reduction

𝑣𝑣𝑖𝑖 =

𝑎𝑎𝑖𝑖
0
…
0
1
0
…
1



Open Problems
o Finding other optimal trade-offs: can we achieve much 

lower query time at a cost of increasing the preprocessing 
time /space?

o Shaving polylog factors from the current results.

o Proving unconditional lower bound for the problem.



Open Problems
o Finding other optimal trade-offs: can we achieve much 

lower query time at a cost of increasing the preprocessing 
time /space?

o Shaving polylog factors from the current results.

o Proving unconditional lower bound for the problem.

Thanks
Questions?
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