Approximate Sparse Linear Regression

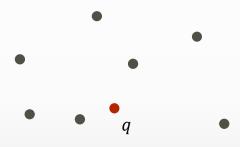
Sariel Har-Peled

Piotr Indyk

Sepideh Mahabadi Columbia U.

Dataset of *n* points *P* in a metric space, e.g. \mathbb{R}^d

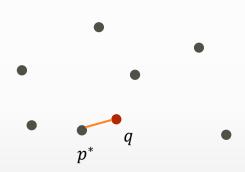
Dataset of *n* points *P* in a metric space, e.g. \mathbb{R}^d A query point *q* comes online



Dataset of *n* points *P* in a metric space, e.g. \mathbb{R}^d A query point *q* comes online

Goal:

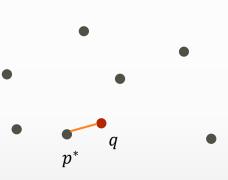
• Find the nearest data point p^*



Dataset of *n* points *P* in a metric space, e.g. \mathbb{R}^d A query point *q* comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space



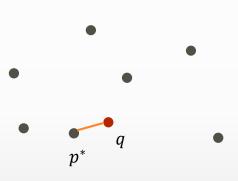
Dataset of *n* points *P* in a metric space, e.g. \mathbb{R}^d A query point *q* comes online

Goal:

- Find the nearest data point p*
- Do it in sub-linear time and small space

All existing algorithms for this problem

- Either space or query time depending exponentially on d
- Or assume certain properties about the data, e.g., bounded intrinsic dimension

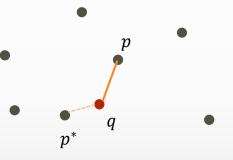


Approximate Nearest Neighbor

Dataset of n points P in a metric space, e.g. \mathbb{R}^d A query point q comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
 - If optimal distance is r, report a point in distance cr for $c = (1 + \epsilon)$

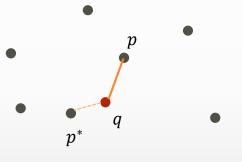


Approximate Nearest Neighbor

Dataset of n points P in a metric space, e.g. \mathbb{R}^d A query point q comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
 - If optimal distance is r, report a point in distance cr for $c = (1 + \epsilon)$
 - For Hamming (and Manhattan) query time is $n^{1/0(c)}$ [IM98]
 - and for Euclidean it is $n^{\overline{O(c^2)}}$ [AI08]

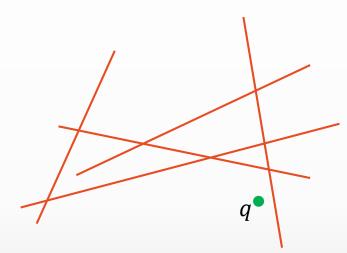


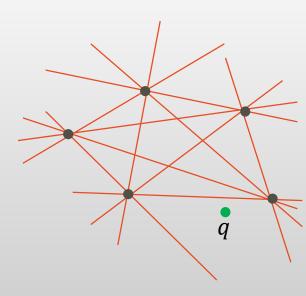
Nearest Hyperplane Search

- Input: a set of N hyperplanes of dimension k in \mathbb{R}^d
- Query: a point in \mathbb{R}^d

Induced Representation:

- Input: a set P of n points in \mathbb{R}^d
- Search Space: all $N = \binom{n}{k} \approx n^k$ hyperplanes defined by k points in P
- Query: a point in \mathbb{R}^d





Our Problems

1. Nearest Induced Subspace

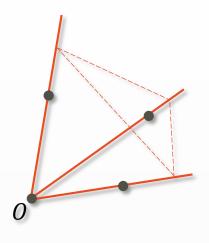
Closest k- subspace passing through the origin and k points of P

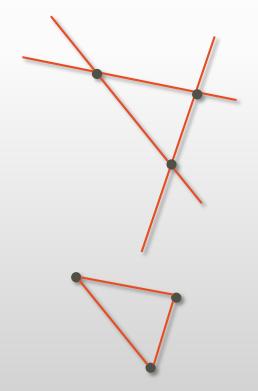
2. Nearest Induced Flat

Closest (k - 1)-flat (affine subspace) passing through k points of P

3. Nearest Induced Simplex

Closest (k - 1)-simplex passing through the origin and k points of P





n = 3,

k = 2

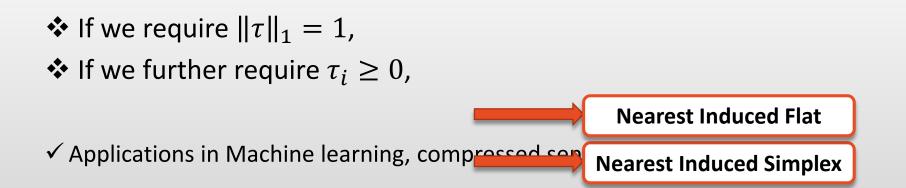
Connection to Sparse Linear Regression

Sparse Linear Regression:

- **Given** a matrix $M \in \mathbb{R}^{d \times n}$ and a d dimensional query q
- Find a *k*-sparse *n* dimensional vector τ which minimizes $||M\tau q||_2$

Equivalent to the **Nearest Induced Subspace** d = M

$$\begin{bmatrix} n \\ M \end{bmatrix} \begin{bmatrix} \tau \\ \tau \end{bmatrix} = \begin{bmatrix} q \end{bmatrix}$$



Connection to Sparse Linear Regression

Sparse Linear Regression:

- Given a matrix $M \in \mathbb{R}^{d \times n}$ and a d dimensional query q
- Find a *k*-sparse *n* dimensional vector τ which minimizes $\|M\tau - q\|_2$ $d\begin{bmatrix}n\\M\end{bmatrix}\begin{bmatrix}\tau\\\end{bmatrix} = \begin{bmatrix}q\end{bmatrix}$

Equivalent to the Nearest Induced Subspace

✓ Applications in Machine learning, compressed sensing, computer vision, etc.

Results – Algorithms

1. Approximate Nearest Induced Problems (Online)

Problem	Equivalent problem	Space	Query
ANI Subspace	SLR	$n^{k-1} \cdot S_{ANN}$	$n^{k-1} \cdot T_{ANN}$
ANI Flat	Affine SLR	$n^{k-1} \cdot S_{ANN}$	$n^{k-1} \cdot T_{ANN}$
ANI Simplex	Convex SLR	$n^{k-1} \cdot \log^k n \cdot S_{ANN}$	$n^{k-1} \cdot \log^k n \cdot T_{ANN}$

2. Special case: convex variant of k = 2, Nearest Induced

Problem	Approximation	Space	Query
Online	$(1+\epsilon), \epsilon \leq 1$	$n \cdot \log n \cdot S_{ANN}$	$n^{k-1} \cdot \epsilon^{-2} \log n \cdot T_{ANN}$
Offline	$2(1+\epsilon)$	$n^{k-1} \cdot S_{ANN}$	$n^{k-1} \cdot T_{ANN}$

Results – Conditional Lower Bounds

1. Assuming "Affinely Degenerate Conjecture"

Our data structure in the **online settings** provides an optimal trade-off up to polylog factors:

• No algorithm can improve both preprocessing from $\widetilde{O}(n^k)$ and query time from $\widetilde{O}(n^{k-1})$ by much.

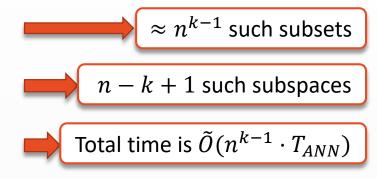
2. Assuming hardness for the k-sum problem

Solving all three variants of the problem in the **offline setting** requires $\widetilde{\Omega}(\frac{n^{k/2}}{e^k})$ times.

Algorithms

Nearest Induced Subspace

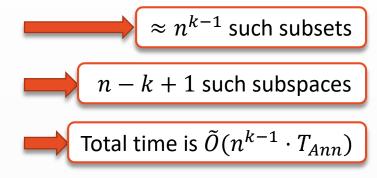
- 1. Fix a subset B of k 1 points
- 2. Search among all k-subspaces \mathcal{F} that include the points in B.
 - Use a single ANN query



- Use the projection Π which maps the points in *B* into the origin.
 - \mathcal{F} becomes a set of vectors $\mathbf{V} = \mathcal{F}_{\Pi} \in \mathbb{R}^{d-k+1}$
 - Project the query as well to get $q_{\Pi} \in \mathbb{R}^{d-k+1}$
- Normalize all vectors to be on the unit sphere
- \succ The closest subspace in ${\mathcal F}\,$ to q corresponds to the closest vector in V to q_{Π}

Nearest Induced Flat

- 1. Fix a subset B of k 1 points
- 2. Search among all k-subspaces \mathcal{F} that include the points in B.
 - Use a single ANN query



- Use the projection Π which maps the points in *B* into the origin.
 - \mathcal{F} becomes a set of vectors $\mathbf{V} = \mathcal{F}_{\Pi} \in \mathbb{R}^{d-k+1}$
 - Project the query as well to get $q_{\Pi} \in \mathbb{R}^{d-k+1}$
- Normalize all vectors to be on the unit sphere
- \succ The closest subspace in \mathcal{F} to q corresponds to the closest vector in V to q_{Π}

Similar approach works for Nearest Induced Flat

Nearest Induced Simplex

- Why not the same approach?
 - × Projection of q onto the nearest flat might fall outside of the simplex corresponding to the nearest subspace

Intermediate goal: retrieve all "feasible simplices"

• Find all $p \subset P \setminus B$ s.t. projection of q on to the flat formed by $p \cup B$, i.e., $\mathcal{F}_{p \cup B}$, falls inside the simplex $\Delta_{p \cup B}$.

 q_{\bullet}

O

- ✓ If we accomplish this, we can use the algorithm for finding the closest flat among this set.
- ✓ What if the closest point on the closest simplex lies on the boundary?
 - The boundary is a lower dimensional object which can be checked by brute force in time $\widetilde{O}(n^{k-1})$

Characterizing Feasibility

"One can detect whether the simplex $\Delta_{p\cup B}$ is feasible or not without having full knowledge of p and q."

p

α

 p_1

More specifically it is enough to have

- The distance (denoted by r) from q to the flat $\mathcal{F}_{p \cup B}$
- The relative positioning of p with respect to B
- The relative positioning of q with respect to B

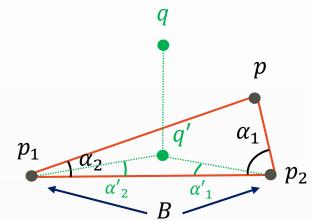
Relative Positioning of a point p with respect to B is $(\alpha_1, \dots, \alpha_{k-1})$ where

- α_i is the angle between (k-2)-dimensional flats \mathcal{F}_B and $\mathcal{F}_{B \cup \{p\} \setminus \{p_i\}}$
- p_i is the *i*-th point in B

Characterizing Feasibility

Let

- $(\alpha_1, \dots, \alpha_{k-1})$: relative positioning of p w.r.t. B
- $(\alpha'_1, \dots, \alpha'_{k-1})$: relative positioning of q' w.r.t. B
 - Where q' is the projection of q on $\mathcal{F}_{B \cup \{p\}}$



Observation: $\Delta_{B \cup \{p\}}$ is feasible iff $\alpha'_i \leq \alpha_i$ for every i < k

Let $(\alpha_1^q, \dots, \alpha_{k-1}^q)$ be the relative positioning of q with respect to B

Lemma: one can compute $(\alpha'_1, \dots, \alpha'_{k-1})$ given 1. $(\alpha_1^q, \cdots, \alpha_{k-1}^q)$

2. and r: the distance from q to $\mathcal{F}_{B \cup \{p\}}$

We don't know r in advance \otimes 🌟

We can detect Feasibility using Range search trees

Feasibility is Monotone

Given

- $(\alpha_1, \cdots, \alpha_{k-1})$: relative positioning of p w.r.t. B
- $(\alpha_1^q, \dots, \alpha_{k-1}^q)$: relative positioning of q w.r.t. B

Monotonicity Property: if for a parameter r the corresponding simplex is feasible, then for all $r' \ge r$, the corresponding simplex is feasible too.

We can use **binary search** to find the correct value of r ©

Algorithm Outline

Data Structure:

- Construct a range search tree on the (k 1)-tuples $(\alpha_1^p, \dots, \alpha_{k-1}^p)$ for all points $p \in P \setminus B$
- For each node T in the tree, construct a data structure on the vectors corresponding to T, for retrieving the nearest **flat** $\mathcal{F}_{B\cup\{p\}}$ for $p \in T$

Query Processing:

- Given q, compute $(\alpha_1^q, \cdots, \alpha_{k-1}^q)$
- Use Binary Search on r
 - Compute $(\alpha'_1, \cdots, \alpha'_{k-1})$ using $(\alpha^q_1, \cdots, \alpha^q_{k-1})$ and r
 - Use the range search tree to retrieve all points p whose simplices would have been feasible if at distance r
 - This step will return polylog nodes T from the tree whose union is our desired set of points.
 - Use their corresponding data structures to retrieve the nearest flat \mathcal{F}_{ANN} among those.
 - If the distance between q and \mathcal{F}_{ANN} was less than r, then continue with a smaller value of r, otherwise continue with a larger value.

Conditional Lower Bounds

Affinely Degenerate Conjecture

Affinely Degenerate Conjecture: given a set P of n points in \mathbb{R}^d , checking whether they are in general position requires $\Omega(n^d)$ time [Erickson, Seidel'95].

• General position: all subsets of d + 1 points are affinely independent.

The Reduction

• Let k = d and construct our data structure for Nearest Induced Flat with space $O(n^k) = O(n^d)$ and a query time of $\tilde{O}(n^{d-1})$

> Use ANN of [AMNSW'98]: $S_{ANN} = O(n)$ and $T_{ANN} = O(\log n)$

- Now for each input point p, we query the closest (d-1)-dimensional induced flat passing through d points of $P \setminus \{p\}$ to P
 - Our data structure can be modified to handle this type of query with an extra log factor.
- If any of the queries reported a 0, the point set is not in general position. Total time is $O(n^d)$.

The *k*-sum Problem

k-sum problem: given n integer numbers a_1, \ldots, a_n , does there exist a subset of size k whose sum is 0?

• Conjectured to require $\widetilde{\Omega}(n^{\lceil k/2 \rceil})$ time

[Patrascu, Williams'10].

The Reduction

- For each integer a_i assign a (k + 1) dimensional vector v_i
 - First coordinate of v_i is a_i
 - All other coordinates are 0, except for one randomly chosen coordinate which is 1
- The **query** is $\left[0, \frac{1}{k}, \dots, \frac{1}{k}\right]^{T}$ and let v_{i_1}, \dots, v_{i_k} be the points corresponding to the nearest flat.
 - If the distance of query to the flat is 0 return a_{i_1}, \dots, a_{i_k}

 \succ This means $q = c_1 v_{i_1} + \dots + c_k v_{i_k}$ for some coefficients

- Otherwise return not possible
- With probability e^{-k} the positions of 1's in v_{i_1}, \ldots, v_{i_k} form a permutation. Therefore their coefficients should be equal and thus $\sum_{j \le k} a_{i_j} = q_1 = 0$
- Similar argument for the reverse direction.

 $r_i = \begin{bmatrix} a_i \\ 0 \\ ... \\ 0 \\ 1 \\ 0 \\ ... \\ 1 \end{bmatrix}$

Open Problems

- Finding other optimal trade-offs: can we achieve much lower query time at a cost of increasing the preprocessing time /space?
- Shaving polylog factors from the current results.
- Proving unconditional lower bound for the problem.

Open Problems

- Finding other optimal trade-offs: can we achieve much lower query time at a cost of increasing the preprocessing time /space?
- Shaving polylog factors from the current results.
- Proving unconditional lower bound for the problem.

